Boul der, Col orado, March 2001. LA-UR 01-1039

Why TCP Will Not Scalefor the Next-Generation I nternet

Eric Weigleé, Wu-chun Feng, and Mark Gardnér
{ehw, feng, mkg@Ianl.gov

t Research & Development in Advanced Network Technology,Alasnos National Laboratory, Los Alamos, NM 87545

! Department of Computer & Information Science, Ohio Statévehsity, Columbus, OH 43210
School of Electrical & Computer Engineering, Purdue Ursityr W. Lafayette, IN 47907

Until recently, the average desktop computer has been fovegrough to saturate any available network technology; bu
this situation is rapidly changing with the advent of Gigdbthernet (GigE) and similar technologies. While CPU sgeed
have improved by over 50% per year since the mid-1980s (ayhigudoubling every 1.6 years) [3], network speeds have
improved by nearly 100% per year from 10-Mb/s Ethernet in8L886.4 Gb/s HiPPI-6400/GSN [10] in 1998! Network
speeds have finally surpassed the ability of the computetl tilvé network pipe, and this situation will get dramatigall
worse due to the above trends as well as slowly increasindgpli®speeds. While the average I/O bandwidth of a PC is
expected to increase from 1.056 Gb/s (32-bit, 33-MHz PC) tnug.224 Gb/s (64-bit, 66-MHz PCI bus) over the next 12-18
months, the widespread availability of HiPPI1-6400/GSNM @b/s) [10] this year and 10GigE (10 Gb/s) [6] next year veill f
outstrip the ability of a computer to fill the network.

Our experiments already demonstrate that a PC can no loalfyeufilize available network bandwidth. With the default
Red Hat Linux 6.2 OS running on dual processor 400-MHz PCis fiteon AceNIC GigE cards on a 32-bit, 33-MHz PCI
bus, the peak bandwidth achieved by TCP is only 335 Mb/s. \fitl83% increase in CPU speed to 733 MHz, the peak
bandwidth only increases by 25% to 420 Mb/s. These bandwidithbers can be improved by about 5% by increasing the
default send/receive buffer sizes from 64 KB to 512 KB, bytaro10% by using interrupt coalescing, and by slightly more
with further enhancements to the system set-up as desdrdded. Unfortunately, TCP still utilizes only half the alahle
bandwidth in the best case between two machines.

This implies that file or web servers wishing to fully utiliteeir available gigabit-per-second bandwidth will haautsle
doing so. Furthermore, remote visualization projects ofdadata sets will be bound by TCP/IP stack performance, as
described below.

To create an environment that delivers maximum bandwidéremoved all processes from the Red Hat Linux 6.2 OS
except for the kernel, init, and a shell, turned off virtuamory and interrupt coalescing, and set the benchmarkihgae
as a real-time process. We then configured a single machinmtthe tests over its loopback interface (thus not touching
the PCI bus or network at all). In this best case, we foundttimmachine spends a majority of time in the protocol stack
rather than transmission into the network and results ig 485 Mb/s on the 400-MHz machine and 590 Mb/s on the 733-
MHz machine. Despite this optimal (albeit unrealistic) ieomment, these numbers demonstrate that it is impossile f
TCP running with Linux on this hardware to achieve gigabiexqts between machines. Thus, even if the hardware-based
bottleneck at the host interface is alleviated, e.qg., ther@infiniBand [1], the software-based bottleneck at thet rderface,
e.g., TCP/IP, will persist.

Additional problems that work to sabotage achieving highdveidth include TCP’s flow- and congestion-control mecha-
nisms and the use of 1500-byte maximum transmission unitd&f$) in Ethernet. For example, TCP Reno generally viewed
as the ubiquitous TCP has been shown to induce bursty anticbabavior in network traffic [5, 7, 9, 2], and its congestio
control mechanism never uses more than 75% of the availmiédandwidth on average [11], e.g., under 750Mbps on a
gigabit Ethernet link. Other versions of TCP begin to adsltes problem, butit s still an open issue. In addition hililCP’s
default flow-control window, connections with large bandthidelay products cannot keep the network pipe full antesuf
significant performance degradation when compared to ttferpeance on LANs. Finally, because of Ethernet’s 1500ebyt
MTU (note: a few non-standard implementations support forpackets” at 9000 bytes), a fully utilized 10-Gb/s Ethérne
line would produce a minimum of 830,000 packets per secdrle Inetwork interface card (NIC) does not provide intetrup
coalescing, each packet would interrupt the host and cajisa@to the interrupt handler. As 2000 cycles per interrgpt i
the minimum for Linux 2.2.17 to switch from a user processh® interrupt handler and back, a 1.6-GHz CPU would be
required merely to handle the interrygithout doing any other processing such as receiving a packet!

While jumbo packets and interrupt coalescing may improviveled bandwidth, there are problems with both. Jumbo
packets can only effectively be used in a local-area netwwitte-area networks will likely fragment them to 1500 bytes
or drop them entirely if we set the "don’t fragment” bit, whigve would want to do to avoid the cost of fragmentation and
reassembly in high-performance systems. Furthermorbkegiwbrst case, a packet may cross an old link that only gusgant
the Internet standard 576-byte transmission unit [8]. Jumdckets also induce blocking on networks that do not allow
out-of-band data (such as Ethernet), where a small highifyripacket from one connection may be enqueued in a switch
behind several large jumbo packets from another conneatidrhave to wait. Switched networks that either have a smalle
MTU (e.g. ATM at 53 bytes) or support out-of-band data (e.grilet) do not suffer from this problem.

Interrupt coalescing forces us to make a tradeoff betweadith and latency. That is, by amortizing the cost of an
interrupt over several packets, we can increase delivesadwidth but the latency increases for each individual pack
Other related approaches which offload work to the NIC aresnatable. For example, some programmers have tried to



place the user’s network buffers on the network interfacd @hus decreasing the total number of copies end to endsdh
approaches require more complex and expensive cards i@ngly, even a few megabytes of memory will account for a
large percent of the cost of a NIC) and the approach does at# as the number of connections increases— servers may
handle thousands of concurrent connections; even with thielyaverage 64KB TCP buffer, that would require much more
memory than the 4 or 8MB of memory than is commonly placed gh4{speed NICs today. Seen another way, a 1 Gigabit
connection across the United States will have a delay ofast [#00ms; this gives a bandwidth-delay product of 100Mb or
12.5MB per connection. Even a single connection of this tyflenot fit on an 8MB NIC.

Moreover, even when the above technical issues are resateedill still have major security implications from having
fast, always-on connections. When delivered bandwidtistrained by host speeds instead of the link speeds, infexo
trivial to perform denial-of-service attacks. A few PCs @asomparable power to the average web server; and if they
produce requests as fast as possible, and the data streanthisattled by the link speed, all requests would arrive kkady
overwhelm the server.

Two solutions have been proposed in the literature. Unfatiely, neither solution completely solves the problenist F
is the argument that we should simply use a reliable UDP oeewarks with large bandwidth-delay products. This may
work in local-area networks without competing flows, busindt a solution as it would lead to congestion collapse if widely
used, as evidenced by the congestion collapse of the mi@slRg. The right solution is to fix TCP, as it is the most widel
used transport protocol and contains congestion-conohanisms. Second is the proposed use of smart queueingisthpu
non-conformant flows, e.g., UDP streams which do not respofaks or streams which appear to be using more than their
fair share of bandwidth (such as those involved in a deniakofice attack). This approach will also not scale— it galer
requires state to be kept on a per flow basis, and even at osly byftes per connection a backbone router handling millions
of connections will be unable to do so economically. Furtiane, attackers would merely have to forge IP headers qestri
packets across multiple connections to circumvent thisaaah. Control measures that only work if the enemy coopserat
are worthless.

In summary, this research brings up a number of issues tleat toebe addressed as we head into the Next-Generation
Internet era:

1. host-interface bottlenecks (hardware and software)

2. protocol off-loading to the network interface card

3. next-generation flow-control and congestion-contrathamisms
4. high-performance networking in a secure environment
5

. Smart routers to punish non-conforming flows, e.g., UDashs or streams from hosts generating distributed denial-
of-service attacks

References

[1] D. Cassiday. InfiniBand Architecture Tutorial. Hot Chif2 Tutorial, August 2000.
[2] W. Feng and P. Tinnakornsrisuphap. The Failure of TCPighHPerformance Computational Grids. Pnoceedings of SC 2000,
November 2000.
[3] J.L.Hennessy and D. A. Pattersd@omputer Architecture: A Quantitative Approach (2nd edition). Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1996.
[4] V. Jacobson. Congestion Avoidance and ContAgtM Computer Communications Review, 18(4):314-329, August 1988.
[5] W. Leland, M. Taqqu, W. Willinger, , and D. Wilson. On thelgSimilar Nature of Network Traffic (Extended VersiohnlEEE/ACM
Transactions on Networking, 2(1):1-15, February 1994,
[6] Nortel Networks. 10 Gigabit Ethernet: Unifying the LANAN, and WAN. White Paper, April 2000.
[7] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure afig®on Modeling. ACM SgComm 1994, pages 257-268, 1994.
ftp://ftp.ee.Ibl.gov/papers/poisson.ps.Z.
[8] J. Postel. The TCP Maximum Segment Size and Related I§REC879), November 1983.
[9] P. Tinnakornsrisuphap, W. Feng, , and I. Philp. On thesBoess of the TCP Congestion-Control Mechanism in a isteid
Computing SystemProceedings of the 20th International Conference on Distributed Computing Systems (ICDCS 00), April 2000.
[10] D. Tolmie, T. M. Boorman, A. DuBois, D. DuBois, W. Fengand I. Philp. From HiPPI-800 to HiPPI-6400: A Changing of the
Guard and Gateway to the Future. Pnoceedings of the 6th International Conference on Parallel Interconnects (PI'99), October
1999.
[11] A. Veres and M. Boda. The Chaotic Nature of TCP CongesBiontrol. InProceedings of | EEE Infocom 2000, March 2000.



